\qquad

C. U. SHAH UNIVERSITY Winter Examination - 2022

Subject Name : Linear Algebra

Subject Code : 5SC01LIA1

Branch: M.Sc. (Mathematics)

Time : 11:00 To 02:00 Marks : 70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

Q-1 Attempt the Following questions.

a. Define : External Direct Sum.
b. State First Homomorphism Theorem.
c. Let V be a finite dimensional over F.If $T \in A(V)$ is right invertible then show that T is invertible.
d. If $\operatorname{dim} \operatorname{dim} V=49$, then find $\operatorname{dim} \operatorname{dim} A(V)$ and $\operatorname{dim} \operatorname{dim} \widehat{V}$.

Q-2 Attempt all questions

a. Let V be a finite dimensional vector space over F and W be subspace of V. Show that \widehat{W} is isomorphic to $\frac{\widehat{V}}{W^{\circ}}$ and
$\operatorname{dim} \operatorname{dim} W^{\circ}=\operatorname{dim} \operatorname{dim} V-\operatorname{dim} \operatorname{dim} W$.
If V is the internal direct sum of $U_{1}, U_{2}, \ldots, U_{n}$ then show that V is
isomorphic to the external direct sum of $U_{1}, U_{2}, \ldots, U_{n}$.
b. isomorphic to the external direct sum

Q-2
a. Let V and W be vector space over F of dimension m and n respectively. Then prove that $\operatorname{HOM}(V, W)$ is of dimension $m n$ over F.

Let V be a finite dimensional vector space over F and W be subspace of
b. $\quad V$. Show that W is finite dimensional , $\operatorname{dim} \operatorname{dim} W \leq \operatorname{dim} \operatorname{dim} V$ and $\operatorname{dim} \operatorname{dim} V / W=\operatorname{dim} \operatorname{dim} V-\operatorname{dim} \operatorname{dim} W$.
a. If A is an algebra over F with unit element then prove that A is
b. that
i) $\quad \operatorname{rank}(S T) \leq \operatorname{rank}(T)$
ii) $\quad \operatorname{rank}(T S) \leq \operatorname{rank}(T)$
iii) If S is regular then $\operatorname{rank}(S T)=\operatorname{rank}(T S)=\operatorname{rank}(T)$

OR
Q-3
a. Let V be a finite dimensional over F then prove that $T \in A(V)$ is
invertible if and only if the constant term in minimal polynomial for T is nonzero.
b. If V is finite dimensional over F, then prove that $T \in A(V)$ is regular if and only if T maps V on to V.
c. Define W° and show that if $U \subset W$ then $W^{\circ} \subset U^{\circ}$ where W and U are subspaces of vector space V.

SECTION - II

Q-4 Attempt the Following questions.
a Prove or disprove : $\operatorname{det} \operatorname{det}(A+B)=\operatorname{det} \operatorname{det}(A)+\operatorname{det} \operatorname{det}(B)$.
b Prove that there do not exist $A, B \in M_{n}(F)$ such that $A B-B A=I$, where F is field with characteristic 0 .
c. Find the symmetric matrix associated with the quadratic form
$4 x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+6 x_{1} x_{2}-10 x_{3}+2 x_{2} x_{3}$.
d Define: Index of Nilpotence.

Q-5 Attempt all questions

a. Let V be a finite dimensional vector space over F and $T \in A(V)$. If all the characteristic roots of T are in F then prove that there is a basis of V with respect to which the matrix of T is upper triangular.

Let V be a finite dimensional vector space over F and $T \in A(V)$. If all the
b. characteristic roots of T are in F then show that T satisfies a polynomial of degree n over F.

OR

Q-5
a. Let V be a finite dimensional vector space over F and $T \in A(V)$ be
nilpotent. If $V_{1}, V_{2}, \ldots, V_{k}$ are cyclic with respect to T such that
$V=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{k}$ with dim dim $V_{i}=n_{i}(1 \leq i \leq k), n_{1} \geq n_{2} \geq \cdots \geq$
n_{k}, and $U_{1}, U_{2}, \ldots, U_{l}$ are cyclic with respect to T such that
$V=U_{1} \oplus U_{2} \oplus \cdots \oplus U_{l}$ with $\operatorname{dim} \operatorname{dim} U_{i}=m_{i}(1 \leq i \leq l)$,
$m_{1} \geq m_{2} \geq \cdots \geq m_{l}$ then show that $k=l$ and $m_{i}=n_{i}$ for all i.

Let V be a finite dimensional vector space over F and $T \in A(V)$. Suppose
b. that $V=V_{1} \oplus V_{2}$, where V_{1} and V_{2} are subspaces of V invariant under T. Let $T_{1}=\left.T\right|_{V_{1}}$ and $T_{2}=\left.T\right|_{V_{2}}$. If the minimal polynomial of T_{1} over F is $p_{1}(x)$ while minimal polynomial of T_{2} over F is $p_{2}(x)$. Then show that minimal polynomial of T over F is the least common multiple of $p_{1}(x)$ and $p_{2}(x)$.

Q-6 Attempt all questions
a. Prove that the determinant of an upper triangular matrix is the product of its entries on the main diagonal.
b. State and prove Cramer's rule.

Q-6

a. Let $A, B \in M_{n}(F)$, prove that $\operatorname{det} \operatorname{det}(A B)=\operatorname{det} \operatorname{det} A \cdot \operatorname{det} \operatorname{det} B$
b. Prove that determinant of a matrix and its transpose are same.
c. Let F be a field. Then for $A, B \in M_{n}(F)$ and $\lambda \in F$, Prove:
i) $\quad \operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
ii) $\quad \operatorname{tr}(A B)=\operatorname{tr}(B A)$

